SU-E-T-500: Pencil-Beam versus Monte Carlo Based Dose Calculation for Proton Therapy Patients with Complex Geometries. Clinical Use of the TOPAS Monte Carlo System.

نویسندگان

  • J Schuemann
  • J Shin
  • J Perl
  • C Grassberger
  • J Verburg
  • B Faddegon
  • H Paganetti
چکیده

PURPOSE To investigate the necessity of the verification of dose distributions using Monte Carlo (MC) simulations for proton therapy of head and neck patients and other complex patient geometries. METHODS TOPAS, a TOol for PArticle Simulations that makes MC simulations easy-to-use for research and clinical use and is layered on top of Geant4, has been used to simulate the treatments of head and neck patients at the Massachusetts General Hospital (MGH). The resulting dose distributions have been compared to pencil beam calculations based on the XiO treatment planning system. Dose difference distributions were used to highlight areas where the two algorithms did not agree. Dose volume histograms are utilized to investigate the overall agreement of the planned doses in target structures. RESULTS 21 head and neck patients, both nasopharynx and spinal cord, were investigated. The field complexity ranges from a single field up to 13 fields. For all patients, the dose in the clinical target volume agrees well. Nevertheless, differences in critical structures around the targets have been observed mostly due to range differences between the two algorithms. CONCLUSIONS Pencil beam algorithms provide an accurate description of dose in the target volume. However, we conclude that the differences between MC simulations and pencil beam algorithms in regions outside the target for complex geometries, such as present in head and neck patients, support the necessity of routine use of MC simulations for treatment verifications before treatment. TOPAS is aiming to make such routine simulations available to all researchers and clinics. An automated interface utilizing TOPAS to enable such simulations has been developed at MGH and should become routinely used in the near future for patients with complex geometries. NIH/NCI R01 CA140735.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SU-E-T-495: Monte Carlo Dose Verification of Passive Scattering Proton Therapy for Prostate Cancer.

PURPOSE To verify the clinical pencil beam dose calculation algorithm for passive scattering proton therapy using field with large range in tissue, i.e. in prostate cancer, using a Monte Carlo (MC) simulation system. METHODS Previously treated prostate cancer cases were randomly selected from our patient database. All patients received the same dose prescription of 50Gy (25 fractions) to plan...

متن کامل

Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms

Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...

متن کامل

Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation

Introduction: Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. Material and Methods:<...

متن کامل

Monte Carlo calculation of proton ranges in water phantom for therapeutic energies

Introduction: One crucial point when calculating the distribution of doses with ions is the uncertainty of the Bragg peak. The proton ranges in determined geometries like homogeneous phantoms and detector geometries can be calculated with a number of various parameterization models. Several different parameterizations of the range-energy relationship exist, with different level...

متن کامل

A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system

AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run-time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part18  شماره 

صفحات  -

تاریخ انتشار 2012